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Abstract

Visual Question Answering is a challenging
task and more so under the zero-shot setting.
We have worked on the problem of zero-shot
Visual Question Answering by leveraging a pre-
trained Vision and Language model. We further
propose a novel transfer methodology for the
same.

Our main goal was to build a working pipeline
using the tools and techniques that we learned
throughout the course given the time con-
straints and computational constraints of Great-
lakes The main advantage of our methodology
is that it requires no training. We first generate
declarative statements using the questions from
the VQA-v2 dataset and use these declarative
statements along with the multiple choices as
the prompts to CLIP’s frozen text encoder. We
pass the image corresponding to that question
in terms of patches and also as whole images
to CLIP’s frozen visual encoder. We achieve
results similar to the state-of-the-art zero-shot
VQA results using our methodology with fewer
parameters used. Our code is available here.

1 Introduction

The ability to understand both visual and textual
cues is crucial for language interactions grounded
in the visual world. We want to design a system
that understands the contents of an image as hu-
mans do and to be able to effectively reason about
the image using natural language. Questions are
a natural way for users to reason about an image.
A variety of tasks in which a question is posed to
an image have emerged. One of them is Visual
Question Answering (VQA). Visual Question An-
swering is a challenging task as it requires a more
deeper understanding of the visual contents of an
image such as "What color is the girl’s dress in the
image?".

However, these Vision and Language models
generally require huge amount of compute. Hence,
we propose to formulate the multimodal VQA task

as a downstream transfer from a large pre-trained
vision and language model. Our novel pipeline
thus requires lesser amount of compute and time
as required by a VQA model that is trained from
scratch.

Improving the performance of VQA could have
far-reaching benefits in the field of personalized
interaction between an AI agent and humans. Addi-
tionally, it can be used in virtual assistant systems
to aid the visually impaired.

2 Related Work

Large Scale Image-Language Pre-Training of
neural networks is now a popular research direc-
tion(Radford et al., 2021) (Jia et al., 2021). CLIP
(Radford et al., 2021) learns joint representations
of image-text paired data by pre-training a large
image-text model contrastively using a visual en-
coder and textual encoder. These learned represen-
tations are then transferred to several downstream
tasks such as Visual Question Answering, Image
Classification, Object Detection, etc. CLIP (Rad-
ford et al., 2021) demonstrates superior zero-shot
performance on a variety of downstream tasks such
as image classification, object detection, etc. It
shows the effectiveness of learning image repre-
sentations using natural language as a supervisory
signal.

Our methodology is inspired by recent advances
in Large Language Models. Pratt et al.(Pratt et al.,
2022) suggested that using customized prompts
generated by a large language model such as GPT-
3 (Brown et al., 2020) instead of the standard
template-based prompts to a vision-language model
for downstream tasks is more effective. In specific
the CuPL (Pratt et al., 2022) generates customized
prompts for each of the categories in the down-
stream dataset from GPT-3 using a fixed template
such as "What does a(n) look like?". After generat-
ing these customized prompts, it is used to prompt
the vision-language model such as CLIP for zero-
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shot image classification. GLIP (Li et al., 2021)
reformulates Object Detection as a grounding task
by aligning each region of an image to phrases in
the text prompt. GLIP is pre-trained on a large
image-text dataset and can be transferred to 13
downstream object detection tasks. Our Image-
Text Matching Module uses GLIP to select patches
of the image that are most relevant to the given
question.

Zero-shot VQA is a challenging task as it re-
quires a more detailed understanding of the image
and complex reasoning. Recent works have ap-
proached this task of zero-shot VQA in different
ways. The DPT (Liu et al., 2022) involves two
steps to adapt the downstream task of VQA to be
similar to the pre-training task format. Firstly, it
converts the question into declarative sentences
and introduces the [MASK] term where the answer
should be present. Secondly, it uses a task adap-
tation module that converts the answer prediction
part to be similar to the pre-training task format of
MLM (Masked Language Modeling) and ITM (Im-
age Text Matching). We will use this declaration
module to convert our questions from the VQA-v2
dataset into declarative sentences.

There are other relevant research works that
have achieved notable results in the task of Zero-
shot VQA. Tiong et al.(Tiong et al., 2022) con-
joined large pre-trained language models to per-
form zero-shot VQA by selecting patches of the
image relevant to the question and answering the
question based on these selected patches. Our
pipeline adopts the image-text matching module
from the Plug-N-Play VQA paper to select the im-
age patches that are relevant to each question. The
QIP model (Shen et al., 2021) performs zero-shot
VQA with CLIP by using prompts for the task in
the standard template: “question: [question text]
answer: [answer text]”.

Some models have performed well in the few-
shot setting and have evaluated their models in the
zero-shot setting also. The TAP-C model (Song
et al., 2022) converts questions from the VQA task
into declarative statements and uses this as prompts
to perform zero-shot VQA using the CLIP model
and further performs few-shot transfer by finetun-
ing the bias and normalization layers in the CLIP
model. Our model converts questions into decla-
rations and additionally sends relevant patches of
the image to solve the zero-shot VQA task. The
PICa model (Yang et al., 2021) converts images

into textual descriptions that GPT-3 can understand,
and then queries GPT-3 to directly predict the an-
swer based on the question and textual descriptions
generated. However, the PICa model performs a
few-shot transfer whereas our pipeline performs a
zero-shot transfer.

Tsimpoukelli et al.(Tsimpoukelli et al., 2021)
attempts to ground a large language model without
changing its weights, similar to prefix tuning. They
transfer this captioning task to the downstream mul-
timodal task of VQA in zero-shot and few-shot
settings. This combined model shows good perfor-
mance on downstream tasks such as VQA.

3 Methodology

We approach the problem of VQA using a novel
pipeline (see Fig 1) that involves using a pre-trained
vision-language model for the downstream multi-
modal task of Visual Question Answering. In our
method, we used a ViT (Dosovitskiy et al., 2020)
based CLIP (Radford et al., 2021) model that has
been trained on more than 400 million image-text
pairs. The use of CLIP-based ViT allowed us to
leverage the rich representations learned by this
model. Firstly, we generated customized prompts
for each question and its corresponding answer
instead of using the same template for all the ques-
tions. The way we did this is by using a declaration
conversion module and GPT-3.

Secondly, we identified and extracted the image
patches that correspond to that specific question.
We did this using an Image-Text matching module.
The patch extraction and selection methodology
is illustrated in 2 We used these extracted patches
of interest and prompts to find the similarity be-
tween them by projecting both of them into CLIP’s
embedding space. We then chose the prompt that
ended up having the maximum similarity.

To elaborate further, for the first step, we found
ways of converting a question and correspond-
ing choices into prompts for the Vision-Language
model. Doing this manually was not feasible as it
required a lot of human effort and it wouldn’t have
been scalable for large datasets either. The next ex-
periment we did was to leverage a pre-trained mod-
ule that has been trained to convert questions into
declarations. Fortunately, Liu et al.(Liu et al., 2022)
had already trained a module to output a declaration
given a question and its corresponding answers. To
save on computing resources, we used their mod-
ule for declaration generation. Their pre-trained



Figure 1: The system architecture of MC-VQA, consists of three main modules. Unlike previous Zero Shot VQA
algorithms which input the entire image to the encoder, we sample and use relevant patches generated by our
pre-trained Image-Text Matching module following the work from (Tiong et al., 2022). Further, we generate
customized prompts by converting our question into a declaration using a pre-trained declaration conversion module
(Liu et al., 2022) as opposed to the standard template-based prompts. Then, both the patches and prompts are used
together to perform zero-shot VQA using pre-trained CLIP.

Figure 2: The architecture of our Patch Selection Pipeline , consists of the Image Text Matching Module and Patch
selection algorithm. We use GradCAM (Selvaraju et al., 2019) and BLIP (Li et al., 2022) to select the image patches
relevant to that particular question. Now once we have our GradCAM attention scores for each patch, we use a
patch selection algorithm to sample k=20 patches with the highest attention scores outputted by GradCAM. These
attention scores can be visualized as a heatmap overlayed on the original image as given in the figure



model was a T-5 transformer that was pre-trained
on a question-to-declaration dataset. We passed
the questions from our VQA-v2 dataset into this
declaration conversion module to generate declara-
tive statements. These declarative statements mask
out the answer to the question in the declarative
statement.

Another experiment that we did was to use GPT-
3 to come up with these declarative statements.
We initially wanted to use ChatGPT to generate
these prompts however, due to an overload of re-
quests, we decided to use GPT-3. However, we
think that using ChatGPT would give us the same
results if not better. We designed a specific prompt
as input to GPT-3 for the three different types of
questions in the VQA-v2 dataset - "other", "num-
ber" and "yes/no". To find the specific example
prompts to generate declarative statements for each
different question type in the dataset please refer to
Appendix 7. One of the examples of the workflow
of querying GPT-3 is illustrated below (see Fig 3).

Due to computational constraints, we generated
declarative statements for 105,600 other type ques-
tions and 10,000 yes/no questions from the VQA-
v2 dataset and evaluated our pipeline on this subset
of the VQA-v2 dataset.

In our next experiment, we wanted to compare
the effect of selecting image patches corresponding
to a particular question versus using the entire im-
age to answer a particular question. The intuition
behind selecting patches for the zero-shot transfer
was that images in the wild can be of varying reso-
lution and in most cases, a question generally tends
to focus on specific patches of the image. Hence,
intuitively we expected that this method should
result in higher performance. Tiong et al.(Tiong
et al., 2022) used an Image Matching Module which
is implemented on top of techniques like Grad-
Cam(Selvaraju et al., 2019) to localize a "word" in
an image and then selects top k patches based on
the heatmaps generated. Tiong et al.also suggested
to randomly sample patches from those selected
patches to introduce stochasticity into the process
which empirically yielded better results as shown
in (Tiong et al., 2022). We utilized the already im-
plemented Image Matching Module from (Tiong
et al., 2022) to generate patches of the images that
correspond to the respective questions.

The above-described method selects small 16×
16 patches corresponding to the question, calcu-
lates the alignments score by averaging the scores

for each patch, and then passes the patches through
CLIP’s frozen image encoder, which transforms
them into 224 × 224 size images. This may pro-
duce incorrect results because enlarging the patches
does not make sense visually. Therefore, we tried
a different approach to select these patches of in-
terest. Instead of selecting the class token, we first
selected patches based on their GradCam scores,
then averaged the alignment scores for the patches
to treat them as a new class token. Using this, we
empirically yielded better results than the previ-
ously described method. This method was inspired
by the Appendix section of the paper (Dosovitskiy
et al., 2020) that stated that using Global Average
Pooling of the features as a class token empirically
yielded similar performance.

Lastly, we wanted to calculate the extent of align-
ment between the selected patches and the gener-
ated prompts and assign the answer as the one with
the maximum alignment by averaging over all the
patches. We did this in a standard Zero Shot Trans-
fer methodology of converting both patches and
images into the CLIP embedding space and then
calculated the cosine similarity between each of
the patch-prompt pairs. Our evaluation details and
results are detailed in the next section.

4 Evaluation and Results

4.1 Datasets and Evaluation

We adopted the zero-shot VQA benchmark namely
VQA-v2. In specific, we restricted our experiments
to a subset of the validation split of the VQA-v2
dataset due to computational constraints. We used
105,600 other type questions and 10,000 yes/no
type questions. We used VQA-v2 for a fair com-
parison with the recent works that use the VQA-v2
benchmark for the task of zero-shot VQA.

Since we reformulate the VQA task as an im-
age classification task, we calculate the accuracy
similar to an image classification task. Hence, we
calculate Top-1 and TOP-5 accuracy from the pre-
dicted labels and correct answers. If the number of
available options is less than 5 for a particular ques-
tion, then we just calculate top-k accuracy where k
is the number of the options available. Though rare,
there might be a case where the correct answer is
not present in the options. In this case, we add the
correct answer to our list of options.



Figure 3: A specific prompt is designed to query GPT-3 with to convert questions into declarative statements. These
declarative statements can then be used as customized prompts to perform zero-shot VQA

SNo. Model Training Details Dataset Question Type Accuracy
1. Plug N Play VQA base Zero-Shot Transfer VQA-v2 val yes/no, other,number 54.3%
2. VLKD ViT-B/16 Zero-Shot Transfer VQA-v2 val yes/no, other,number 38.6%
3. Frozen VQA Zero-Shot Transfer VQA-v2 val yes/no, other,number 39.1%
4. TAP-C (w/ CLIP ViT-B/16) Zero-Shot Transfer VQA-v2 val other 18.55%
5. QIP (w/ CLIP ViT-B/16) Zero-Shot Transfer VQA-v2 val other 0.70%
6. Our Base (whole image) Zero-Shot Transfer VQA-v2 val yes/no,other 49.5%

Table 1: Comparison Results with state of the art on zero-shot VQA.

SNo. Visual Encoder Top-1 Accuracy Top-5 Accuracy
1. ViT-B/16 23.22% 47.54%
2. ViT-L/14 23.78% 48.65%
3. ResNet-50 21.61% 45.92%

Table 2: Comparing results of effect of different Visual Encoders on zero-shot VQA. For all these experiments, we
evaluated on the VQA-v2 val set and used the other type questions.

SNo. Patch Selection Method Top-1 Accuracy Top-5 Accuracy
1. using ITM module similar to (Tiong et al., 2022) 3.51% 13.28%
2. using GAP as a class token 12.61% 32.65%

Table 3: Comparing results of the effect of different patch selection methods. For both these experiments, we use
ViT-B/16 as the visual encoder, K=20 patches, and declarative statements as prompts and evaluated on other type
questions of VQA-v2 val set. Note: GAP indicates global average pooling of ViT features

SNo. Question type from VQA-v2 val set Top-1 Accuracy Top-5 Accuracy
1. other 23.22% 47.54%
2. yes/no 76.43% −

Table 4: Comparing results of our best performing model (passing declarative sentences as prompts and entire
images to CLIP’s frozen model) on different question types of VQA-v2 validation set



4.2 Implementation Details

In our initial experiments, for the declaration con-
version module, we first adopted a T-5 transformer
pre-trained on a question-to-declaration dataset
(Liu et al., 2022). In the later experiments, we
adopted GPT-3 (Brown et al., 2020) with the
DaVinci-003 as the engine for our declaration con-
version module.

To obtain the image-question matching module,
we adopt BLIP (Li et al., 2022) with the ViT-L/16
architecture pre-trained on 129M image-text pairs
which is adopted from (Tiong et al., 2022).

We use ViT B/16 as the visual encoder in CLIP.
Hence, the CLIP model we use is CLIP ViT-B/16.
However, we also performed some experiments
using ViT-L/16.

Unless otherwise mentioned, we select the 8th
cross-attention layer of the ITE network for Grad-
CAM. We sample K=20 patches for the experiment
where we use patches.

4.3 Results

For the first experiment, we used the declarative
sentences generated by the pre-trained T-5 trans-
former and we selected patches of the image cor-
responding to the question using the Image-Text
Matching Module. Additionally, we only use the
other types of questions. We get poor results with
this experiment.

For the second experiment, we used the declar-
ative sentences generated by the pre-trained T-5
transformer and we passed the whole image to
CLIP’s frozen model. Additionally, we only use
the other types of questions. We end up getting a
5% boost as compared to the TAP-C model (Song
et al., 2022) evaluated on only other type questions
from VQA-v2’s validation set.

For our next experiment, we used the declar-
ative sentences generated by the pre-trained T-5
transformer and we selected patches of the image
corresponding to the question using the Image-Text
Matching Module. Additionally, we global average
pool the ViT’s features and use this as a class token
in the zero-shot evaluation instead. Further, we
only use the other types of questions which are the
most difficult type of questions in VQA. This gave
us a 10% boost from the results we obtained in the
first experiment.

Finally, we used GPT-3 to generate the declara-
tive sentences using the yes/no questions and other
types of questions. We evaluate the performance

on only yes/no questions and then evaluate the per-
formance only on other types of questions and av-
erage out the accuracy obtained from both the ex-
periments following previous works. This model
performs the best and is the final model we plan on
using. We achieved comparable performance with
the current SOTA model.

Comparison results with the previous SOTA and
several recent models can be found in the following
table (see 1). Our results show that our model’s
accuracy surpasses our baselines QIP and TAP-C
models easily and significantly by a huge margin,
thus affirming our intuition of using customized
prompts for the VQA tasks. Even though our
model’s accuracy does not reach up to the state-
of-the-art performance of Plug N Play VQA, it is
relatively close to it. We would also like to stress
on the fact that Plug and Play VQA uses four pre-
trained large language models whereas we just use
two. Hence, the FLOPS required by our model will
be significantly lower than the one required by the
Plug N Play VQA.

A breakdown of the performance of our best
model can be found in the below table (see table
4). Our model has an accuracy of 76.43% for the
yes/no questions which is expected since there ex-
ists only a binary decision for these types of ques-
tions. Our model performs significantly better than
some existing models for the other type questions
having a top-1 accuracy of 23.33 % and top-5 ac-
curacy of 47.54 %.

For the Ablation studies, we wanted to stress that
our method is backbone agnostic, i.e it works with
both the ViT non-hierarchical-based backbones and
hierarchical ResNet-based backbones. The actual
performance accuracies can be seen in the follow-
ing table (see table 3). Our model performs con-
sistently for all the different backbone types. We
also tested different k for selecting patches from
the image and it was empirical that for k=20, the
model achieved the best performance. As we feel
the result of this is not relatively more important
than the other results above we have decided not
to include that table for different values of k in the
results.

5 Conclusion

In conclusion, our experiments show that using the
entire image instead of just a few selected patches
when querying CLIP’s frozen model leads to im-
proved performance. This can be attributed to the



fact that using the entire image maintains the global
context of the image. Additionally, we found that
using global average pooling of ViT’s features as a
class token along with the selected patches outper-
forms the method where we use the ITM module
following (Tiong et al., 2022). This suggests that
maintaining global context and incorporating in-
formation from both the selected patches and the
global features can improve performance.

6 Future Work

In the future, we hope to use the entire validation
set of VQA-v2 to evaluate our pipeline. In addition
to that, we plan to replace GPT-3 with ChatGPT
to convert our questions into declarative sentences
which could lead to better performance as ChatGPT
is trained using reinforcement learning. Addition-
ally, we hope to find more ways in which we could
inject the global context of the image while passing
the selected patches to CLIP’s frozen model for
zero-shot transfer.

7 Appendix

7.1 Some Prompt Examples for GPT-3

Prompt for yes/no type questions:
Q: Is this a creamy soup?
A1: This is not a creamy soup
A2: This is a creamy soup

Q: Is he playing tennis?
A1:

Result from GPT-3 text completion model:

Q: Is this a creamy soup?
A1: This is not a creamy soup
A2: This is a creamy soup

Q: Is he playing tennis?
A1: Yes, he is playing tennis
A2: No, he is not playing tennis

Prompt for other type and number type ques-
tions:

Q: What color are these bananas?
A: These bananas are <MASK>

Q: What is red food?
A: <MASK> is the red food.

Q: What color is the bat?
A:

Result from GPT-3 text completion model:

Q: What color are these bananas?
A: These bananas are <MASK>

Q: What is red food?
A: <MASK> is the red food.

Q: What color is the bat?
A: The bat is <MASK>

Note: the portion that is highlighted is what was
generated by GPT-3

7.2 Visualizations

In the appendix, we show visualizations of Grad-
CAM heatmaps and the generated declarative state-
ments (prompts) for VQA-v2 in the following page.

These examples from VQA-v2 dataset are from
the subset of other type questions. The visualiza-
tions for yes/no questions would be the same since
it’s a relatively easier task. Hence, we have decided
not to include it in the report to manage space. We
show how patches can get selected based on the
GradCAM heatmap.

From the 4, we can see that GradCAM does not
always localize the object of interest very well as
shown in some of the examples above. In the ex-
ample of the question - "Is the person a male or
female?", GradCAM isn’t able to effectively lo-
calize the person in the image. Better alternatives
to GradCam such as GradCam+, EigenCam, and
ScoreCam might lead to better results, though ex-
periments in this are left as future work.
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