
EECS 442 Final Report: A Monocular Local Mapper for Urban Scenes

Ruohua Li
ruohuali@umich.edu

Carolyn Melvin
camelvin@umich.edu

Kshama Nitin Shah
kshama@umich.edu

Jiamin Yang
jiaminy@umich.edu

Abstract

In this paper we will discuss the process and relevance
of building a monocular local mapper in urban settings. We
proposed a model that performs semantic segmentation ap-
proaches, object detection, and depth estimation simulta-
neously. We will explain the details of each process, the
integration of our techniques, and relevant researches.

1. Introduction

The recent advancements of deep learning in the area of
computer vision have shown its great potential to be applied
to the development of navigation and motion planning in
urban scenes for robots and autonomous vehicles with cam-
eras. In order to enable these downstream tasks, firstly it is
required to implement a system that is able to map the ur-
ban scenes into objects that should be avoided and drivable
open spaces, in the meantime knowing the distance from
the camera to these entities. These requirements inspired us
to design a Monocular Local Mapper for Urban Scenes that
can perform object detection, semantic segmentation, and
object detection in the same time.

2. Related Work

In this section, we discuss the relevant methods for
Monocular Depth Estimation using semantic segmentation,
Depth Estimation and Object Detection.

2.1. Semantic Segmentation

Semantic segmentation is a computer vision task that in-
volves assigning a class to each pixel of an image. It is also
known as pixel-wise classification. The semantic segmen-
tation has three steps: 1. Classifying a certain object in the
image 2. Localizing the object by drawing a bounding box
around that object 3. Segmentation by grouping the pixels
in the localized image by creating a segmentation mask. To
perform this task, an encoder is used to extract the features.
The encoder consists of the convolution and max pooling
layers. The size of the image gradually decreases while the
depth gradually increases in the encoder. A decoder is used

to gradually upsample the extracted features. The size of
the image gradually increases while the depth slowly de-
creases in the decoder. The output from the semantic seg-
mentation is a high resolution image in which each image
is classified to a particular class. One of the most popular
architectures that were developed to perform semantic seg-
mentation was the U-Net [9] architecture. It is a Fully Con-
volutional Neural Network with no fully connected layers.
It has the design of an encoder known as contract path and
decoder known as expansive path. The former is used to ex-
tract features by downsampling, while the latter is used for
upsampling the extracted features using the deconvolutional
layers. The only difference between the FCN (Fully Con-
nected Network) and U-Net is that the FCN uses the final
extracted features to upsample, while U-net uses something
called a shortcut connection to do that. Our method uses
three steps on each path, each horizontal block is composed
of 2 convolutional layers. The upsampling and downsam-
pling operations are done by the pooling and bilinear in-
terpolation operations. We also input a feature map that is
obtained from the feature extractor to the UNET instead of
passing a pure image as input. DeepLab [1] was another
architecture developed by Google to tackle the same chal-
lenge of semantic segmentation. It uses CNN as its primary
architecture. Unlike the U-net, which uses features from
every convolutional block and then concatenates them with
their corresponding deconvolutional block, DeepLab uses
features yielded by the last convolutional block before up-
sampling it, similarly to FCN. It uses a modified version of
FCN. The DeepLab applies atrous convolution for upsam-
pling to achieve a denser a denser representation for seg-
mentation tasks. Atrous convolution (also known as dilated
convolution) is a type of convolution with defined gaps. The
advantage of using a dilated convolution is that it reduces
the computational cost significantly. Our method is to pass
the feature map and resized image combined as the input to
the DeepLab model. We use a total of 3 dilations and one
image spatial pooling.

2.2. Depth Estimation

Depth estimation is another per pixel task that deter-
mines how far each pixel is from the observer. Traditionally,

1



Figure 1. The outer architecture of our model. As shown there is a
shared feature extractor and two separate heads for three tasks.

image based depth reconstruction used SLAM approaches.
Recent machine learning algorithms have achieved much
better results where a CNN was employed to generate a
depth map from a single RGB image using supervised learn-
ing. Our approach to achieve depth estimation is to use the
semantic segmentation model and an extra convolutional
layer since the output format for both of them are quite close
and they both share the same heuristics.

2.3. Object Detection

The goal of object detection is to recognize instances of
a predefined set of object classes and describe the location
of each detected object using a bounding box. It consists
of two separate tasks namely classification and localiza-
tion. YOLOv1 [8] is a singe stage object detector, it is a
single neural network that predicts class probabilities and
bounding boxes directly from the input image. Firstly it
divides the input image into a 7x7 grid. If the center of
an object falls into a grid cell, the cell is assigned for de-
tecting it.The neural network then predicts the confidence
scores, bounding boxes and classes for each cell. The con-
fidence score represents how likely a bounding box con-
tains an object (not a category). Thus, each bounding box
has 5 predictions: x, y, w, h and confidence score, where
(x, y) are relative to a grid cell and (w, h) is relative to
the whole image. So, if a cell does not contain an object,
the confidence score should be zero; otherwise, it should
be equal to the IOU between the predicted and the ground
truth box.A union over intersection operation between the
predicted box and the ground truth box is performed to gen-
erate the confidence scores. Finally to predict the outputs
for the bounding boxes, a 1x1 convolutional layer, hidden
dimensions filters, Dropout layers, Leaky ReLu and a 1x1
convolutional layers are used. define confidence score as
Probability(Object) * IOU with the ground truth. Addition-
ally, the YOLO predicts C class probabilities per grid cell
(regardless of the number of bounding boxes). Therefore,
there are S × S × (B × 5 + C) predictions. Our method
adopts a simplified version of the YOLOv1 object detection
model.

3. Method
3.1. Problem Statement

As mentioned, to enable well-informed navigation in ur-
ban scenes, we would like to construct a system based on
monocular image stream that is able to (1) detect movable
objects, (2) segment out open/drivable spaces, and (3) mea-
sure the distance from the camera to the open spaces and
objects simultaneously. To resolve these problems with a
single deep learning architecture, our design need to per-
form (1) object detection, (2) semantic segmentation, and
(3) depth estimation respectively.

3.2. Design Constraints

The main issue we faced during the design process is
lacking computational resources. For the entirety of imple-
mentation, training, and evaluation, we need operate only
on a single 1050Ti GPU with less than 2GB of CUDA mem-
ory. Also for our design to be able to be deployed on edge
devices and run with an acceptable speed, we would like the
architecture to be as lightweight as possible for both train-
ing and inference.

These constraints implies that we needed to restrict the
size of our model during both forward and backward pass
and the FLOPs needed during inference. To meet such con-
straints, all parts of our design are significantly reduced in
size as opposed to their original counterparts. Also, during
training, the batch size, size of dataset, and preprocessing
we used were limited, which greatly influenced the final re-
sult.

3.3. Train of Thoughts

A natural thought of tackling with this problem is to con-
struct three models to solve the three problems individually.
Like use a model proposed by Eigen et al. [2] to do depth
estimation, a U-Net model [9] to do segmentation, and a
YOLOv1 [8] model to do object detection. detection. How-
ever, the sort of implementation contradicts with the con-
straints we were facing, which put restriction on the size of
model. Therefore we took a path that enables us to reuse
computation during inference as much as possible.

Firstly, we realized that depth estimation and semantic
segmentation share close output format and inherent heuris-
tics, so it is possible to implement and train a single neural
network to perform both tasks at once. Also it is noticed
by us that both process requires the procedure of feature
extraction.

Directed by these thoughts, we chose a design as fol-
lows. First a shared backbone network will perform feature
extraction. Then one downstream network will utilize the
feature extracted to perform object detection while the other
downstream network will perform segmentation and depth
estimation in the same time.

2



Figure 2. Snapshots of training process for U-Net (from epoch 9, 59, and 109 respectively). The three columns are from left to right are
combined effect, depth estimation, and semantic segmentation.

Figure 3. The loss value during the training process.

Figure 4. An example of combined effect after training

For the choice of feature extractor, we chose Mo-
bileNetV3 [4] pretrained on ImageNet [6] for its optimized
size-accuracy balance. During training procedure, we froze
the weights of the backbone network and just train the seg-
mentation, depth estimation, and object detection heads.

We provide the details of our implementation of the net-
work for semantic segmentation as well as depth estimation
and that of object detection as follows.

3.4. Semantic segmentation & Depth Estimation

We implemented two lightweight architectures for the
dual task of semantic segmentation and depth estimation
and they showed comparable performance during the ex-
periments. These two architectures was originally both de-
veloped solely for semantic segmentation, and we added an
extra channel in the final convolution layer to perform dense
regression which is the result for depth estimation.

We firstly tried a lightweighted version of U-Net [9]. In

the original implementation, there are 5 feature maps gen-
erated in both the contracting path and the expanding path.
In each path, the numbers of channels follows the sequence
of [64, 128, 256, 512, 1024], and the initial input resolution
is 572 × 572. We reduced the computation needed by this
architecture significantly by reducing the number of chan-
nels in each path to [64, 128, 128] and the input resolution
is adjusted to 96× 48.

Then as comparison we also implemented a lightweight
version of DeepLabV3 [1]. In the original implementa-
tion, there was a series of dilated convolution layers prior
to ASPP module, and inside the ASPP module there are 4
dilate convolutions each with different dilate rates. In our
implementation, the convolution layers prior to the ASPP
module was removed and there was only 3 convolution be-
ing performed inside the ASPP module.

3.5. Object Detection

We implemented a modified version of YOLOv1 to per-
form object detection. We used MobileNetV3 instead of
the original feature extractor. Furthermore we added Leaky
ReLU and BatchNorm inside the architecture to gain better
convergence rate.

4. Experiment

4.1. Setup

For experiment setup, we used the aforementioned
lightweight version of U-Net and YOLOv1. We trained
them separately. During training each of the two networks
has their own frozen backbone network, a MobileNetV3,
and before inference we simply delete their backbone net-
works and instantiate a new one for them to share.

3



4.2. Dataset

For all of depth estimation, semantic segmentation, and
object detection, we used KITTI dataset [3], inside which
all images are of size 1216 × 352 × 3, where 3 denotes
the channel number. To reduce the computational resources
required we resized the inputs to 1

3 of its original size. Ad-
ditionally, in order to increase the robustness of the model
we used various preprocessing of images such as random
horizontal flip, color adjusting, and solarization.

4.3. Loss Design

For YOLO detector naturally YOLO loss is used which
is a combination of bbox regression loss, classification loss,
and confidence loss. For semantic segmentation, we used
weighted Cross Entropy loss which gives objects and lanes
more weight during training. For depth estimation, we used
a combination of L2 loss, SSIM loss [7], and depth smooth-
ness loss [10].

4.4. Training & Evaluation

We trained both networks for 109 epochs (as shown in
2 and 3). For U-Net we used an Adam [5] optimizer with
an initial learning rate of 0.0005, and for YOLO we used a
SGD optimizer [6] with learning rate of 0.0001. None of
the optimizer employed weight decay or momentum since
these additions may change the weights of the backbone
network even when its weights are frozen.

The final combined effect (as shown in 4) is not quite
ideal compared to what we had in mind, especially due
to lack of training epochs, the accuracy for object detec-
tion and semantic segmentation is lower than expectation.
But thanks to the effort in reducing the size of models, our
model achieves inference speed of 70 FPS on Nvidia 1050Ti
GPU and 0.3 FPS on Intel i7-7th gen CPU, and the speed is
expected to be enhanced by possible quantization.

5. Conclusion

In conclusion, we implemented a deep learning-based
system that is able to perform object detection, semantic
segmentation, and depth estimation simultaneously. We
proposed a model that use one neural network to accomplish
object detection and a separate one to accomplish semantic
segmentation and depth estimation. We let them share the
same feature extractor to achieve desirable speed in infer-
ence.

As for future perspective, the priority should be further
experimenting on hyperparameter tuning and architecture
designs that could increase the inference accuracy of the
model. Also quantizing the model to lower precision (16
bit or 8 bit) has the potential to further decrease the size of
the model.

References
[1] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-
tion, 2017.

[2] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network, 2014.

[3] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. International Journal of Robotics
Research (IJRR), 2013.

[4] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen,
M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le,
and H. Adam. Searching for mobilenetv3, 2019.

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization, 2017.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

[7] J. Nilsson and T. Akenine-Möller. Understanding ssim,
2020.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection, 2016.

[9] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation, 2015.

[10] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and
I. Reid. Unsupervised learning of monocular depth estima-
tion and visual odometry with deep feature reconstruction,
2018.

4


